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The study of Longitudinal and transverse elastic waves in media which 
contain curvilinear boundaries is of great theoretical and practical 
significance. 

However, up to the present time it has not been possible to obtain 
results which were sufficiently general to characterize the displacement 
field of elastic waves and which would shed light on their dynamic 
characteristics (amplitude, wave form, etc. 1. 

The methods of solution of dynamic elasticity problems which have 
been worked out thus far have been applied to certain particular forms 
of curvilinear surfaces [ l-8 1. 

In the case of diffraction of steady-state elastic waves around an 
arbitrary rigidly embedded obstacle, the problem leads to a system of 
singular integral equations which can be reduced to a regular Fredholm 
system [ 1 1. 

The two-dinensional problem of the diffraction of an elastic wave for 
a piecewise smooth contour was examined in [ 9 16 This problem also leads 
to a system of integral equations. The solvability of the system was not 
demonstrated in this work. The three-dimensional diffraction problem was 
solved analogously in [ 10 I ; moreover, in contrast to [ 9 I, the solva- 
bility of the system of integral equations was proved. Because of 
significant mathematical difficulties, the results obtained in [ l-10 1 
do not allow one to deduce any physical consequences of elastic wave 
dynamics. 

In a series of works contained in [ 11 1 an infinite series analysis 
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was proposed for the representation of the solution of the elastic wave 
propagation problem in cylindrical and spherical regions. However, this 
method has likewise been applied only to particular forms of surfaces. 

In [ 12 I a sufficiently general method of solution of the problem of 
scattering of elastic waves by an arbitrary curvilinear surface was er- 
pounded. Corresponding asymptotic formulas were obtained for the reflec- 
tion of longitudinal and transverse waves. and likewise for the head 
wave which is generated by the incidence of a plane transverse elastic 
wave on a curvilinear surface. This method is based on the application 
of a principle of Kirchhoff for a system of wave equations and a 
“principle of the isolation of an element” which has been applied to 
rectilinear 113.14 1 and curvilinear surfaces [ 15 I. 

Recently it has been shown that to the first order it is valid to use 
the .principle of the isolation of an element? to obtain the laws of 
reflection and refraction. both for rectilinear and curvilinear bound- 
aries [ 13.14 1, that is, for angles that are less than the limiting angle 
(angle of complete internal reflection). There is reason to suppose that 
the principle remains valid for angles larger than the limiting angle. 
This stems from the formulas obtained on the basis of an asymptotic (or 
ray) method [ i7,18 I, 

The head wave which is generated by the incidence of a plane elastic 
wave on a rigidly embedded circular cylinder is investigated below; the 
effects which arise in this case are investigated only in the exposed 
region (in accordance with Kirchhoff’s principle). From a kinematic 
analysis it follows that the head wave will not be generated in the 
‘shadown region. In the ‘shadow” region there exists a more complicated 
diffraction picture that is not investigated. The analysis of the 
diffraction picture in the region of “shadow l or “half-shadow’ is possi- 
ble only on the basis of an exact solution and the application of methods 
which are analogous to those developed by Fok for the electrodynamic 
case [19,20 1, 

1. Formulation of the problem and construction of the 
solution. Let a plane transverse elastic wave be incident, in a direc- 
tion parallel to the x-axis, on a cylinder of radius h placed in an in- 
finite elastic space 

(1.1) 

It is assumed that the plane of incidence is perpendicular to the 
cylinder’s generators. 
shown in Fig. 1. 

An outline of the cylinder in the z = 0 plane is 

In accordance with the *principle of the isolation of au element’, 
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Fig. 1. Fig. 2. 

the reflection potentials near the boundary points of the cylinder have 
the forms 

‘p (z, y, t) = Ae-iotei~*!a,s+p,Y+y,), *I (2, y, t) = Be-i~‘eik~(IX2X+PzY~l-*z) (1.2) 

fie components of the displacement vector have, by (1.1) and (1.2), 

the form 

“==+T acp 
8Y ’ 

&&!$ (II* = $0 + 91) (1.3) 

We denote by x and x0 the angles (Fig. 11 formed by the radius vectors 
to the points Q and P and the x-axis. 

On the boundary of the cylinder we have the following conditions: 

Using (1.11, (1.2), (1.3) and substituting into (1.4), we obtain 

CL1 = E sin2 x - COS x 1/i - t52 sin? x , a2 = 1-22~0~~~ 

PI = - (E Cos x -i-_ p'l - s2 sin2 x) sin x, pz = -2sinxcosx (1.5) 

rl = h (E cos x + i/l - .5:! sin2 yJ, y2 = 2hcosx 

Esin2X-cosx 1/l-@sin2x C 
&+1 

! (1.6) 
B (x) = - kl 

Esin2x+cos&1-~~sin2x 

It is required to find the value of the field at an arbitrary point 
P in the xy-space. We represent the reflection potential (1.2) at the 
arbitrary point P by means of the Kirchhoff formula 
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In this, the surface of integration is to be understood as the sum 
S = S, + S, + S, + S, (Fig. 2). Ihe integrals over S, are zero by virtue 
of the Kirchhoff condition (“shadown region); the integrals on S, and S, 
mutually cancel. Calculations show [21 1 that the integrals on S, approach 
zero for Ra + m . As a result of this the expressions entering into (1.7) 
ha;tethe form dS, = hdXdl, r = I/( p2 + c2>. Assuming h << R, we may 

After some calculations analogous to [ 12 1 , we obtain for the dis- 
placements in the reflected longitudinal wave 

@l(P) = ih2 cos xc01 (XI& u1 (P) ,N ik12 sin x,,U, (x,R) 

Here 
h 

Udx, RI = 1/z 
exp [ i(hR - 1/4n)] 

I/k- s A (xl Q (x) exp WV (x)1 dx U.8) 
--n/2 

For the displacements of the reflected transverse wave we obtain 

u2 (P) = ik22 sin x,JJ,(x,R), v2 (P) M - ik22 cos XoU2 (X,R) 

Here 

u2 (X,R) = cos +-&xp ii (;;+1/4n)1 >i 
!a 

xl2 

X 
5 

B(x)cos (x-?$)exp[--ipcos (x-$)]dx (1.9) 
--x/2 

lhe quantities entering into (1.8) and (1.9) have the form 

j(+(1-s)COSX-2cOS~COS(X-~) 

’ -xk 
Q(x) =COS+%OS~ , p = 2k,h cos -$ 

Xk = sin-l (ssinx), 6=x-xX0 
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‘Ibe local coefficients of reflection A(X) and B(X) are determined by 
Formulas (1.6). 

2. Approximate estimates of the integrals. Integrals of the 
type of (1.8) and (1.9) are most conveniently analysed by the method of 
stationary phase. To do this, we determine the singular points of the 
integrands in Expressions (1.8) and (1.9). Singularities can arise only 
from terms in the local coefficients of reflection (1.6), i.e. for 
jf(l-62 sin’ x) = 0. 

In this case we have 

sin x* = 6 (0 =$a) (2.1) 

Thus, in the case of incidence of a transverse wave the branch points 
lie on the real axis, As regards the equation 

an 

h=ssinax+coS~~l-s2sin2~=0 (2.2) 

analysis shows that it has no real roots [ 12 1. 

We turn next to the estimate of the integrals entering into (1.8) and 
(1.9). The equations of the saddle points have the form: 

for the longitudinal reflected wave 

for the transverse reflected wave 

~(21 = 1 
-g- x0 (2.4) 

It can be shown that in the sublimiting 
case there exists the relation x(l) < 
x(*) < xc*). We determine the saddle-point 
contours of integration for the calcula- 
tion of the displacements of the reflected 
longitudinal and transverse waves. 

In the case of the longitudinal wave 
(1.8), the saddle-point path rl is 

Fig. 3. 

Im f (xf = Im f (x’“‘f , Ret(x)<0 

For a verification of the latter condition we make a change of vari- 
ables 
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X = x(l) + se% 

As a result, if f(x) is expanded in 
hood of x = x(l), we obtain 

Re f (x) = - 2s sin O1 ($1) + 

(s < 1) 

a Taylor series in the neighbor- 

Hence, the behavior of the function Re f(x) is determined by the sign 
of the second derivative f”(x (l)). 
x(l) = 0. 

For considerations of simplicity let 

In this case 

Re f tr) = - 29 sin fll cos e1 q = G sin 2e*j” (0) (el = - e*) 

Assume that f”{O) > 0. Iben the direction through the point s = 0, 
corresponding to 8 
l/2 s2 

* = l/4, will be the most rapid [ 12 I for the function 
sin 20*. Taking into account that 

e1 =-e*, f” (x(l)) = - ft _i 28 cos x0 + 82 < 0 

we obtain the location of the saddle-point contour I’1 of the longitudinal 
wave (Fig. 31. 

For the determination of the direction of the saddle-point path in the 
case of a transverse wave, we make the change of variables cos(x- 
l/2 x()1 = 1 + is2. Here s is a new real variable. Then the equation for 
the saddle-point contour in the complex plane (x’~ ~“1 will be 

The saddle-point 
x(2) = l/2 x0 at an 
l/2 x0 + im and the 

We represent the 
the form 

cos (x’ - l/s &JcoLhf = 1 (2.5) 

contour lY2 intersects the real axis at the point 
angle of 43’ and approaches one side as - l/2 s + 
other side as + l/2 R + l/2 x0 - im (Fig. 3). 

displacements in the reflected longitudinal wave in 

u1 (P) zikl cos x0 U, (x(l), R), I+ (P) z ik, sin x0 U&(l), R) 

Here 

U1 (P, R) = fi$ A (x9 Q (x9 exp I% (R +.hf (xcl))>l (2.Q 

Analogously, for the displacements in the reflected transverse wave 
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we have 

Here 

‘Ihe formulas that have been obtained for the displacements of the re- 
fleeted longitudinal and transverse waves may be easily derived by the 

Fig. 4. Fig. 5. Fig. 6. 

asymptotic (or ray) method, In the present case, this will be a con- 
sequence of an asymptotic analysis of the Kirchhoff integrals under the 
conditions k, @ >> 1 and k, 2 h >> 1. However, these formulas will be 
required for the subsequent investigation of the head wave. 

Expression (2.7) is not complete be- 
cause it does not take into account the 
branch points in the integrands in (1.9). 
The latter must be considered in the de- 
formation of the original contour of in- 
tegration into the saddle-point contour 

x lYz. We investigate this case in the 
following section. 

Fig. ‘7. 
3. Investigation of the head 

wave. We examine the generated head wave 
from a kinematic point of view. Figure 4 

shows the ray pattern for the location of the fronts of the reflected 
longitudinal and transverse waves at some instant of time. We shall find 
the relationship linking the angles x, r and cr. From Fig. 5 we have 
cos r = sin x, cos o = (u/b) sin x. 

Under complete internal reflection it is clear that D = 0 (Fig. 61, 
and we arrive at the condition corresponding to the emergence of a head 
wave 
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sinX*=b/a=9 (3.1) 

As can be seen by comparison, conditions (2.1) and (3.1) are equiva- 
lent, i.e. the branch point geometrically determines the limiting angle 
e*. 

If one now considers the path of the rays of the incident and re- 
flected transverse waves, the pattern will be the following. Ihe direc- 
tion x0 = const corresponds to the point of observation P. Tne effects 
are examined at distances R/A >> 1; therefore, of all the rays scattered 
by the given point of the cylindrical surface, the dominant one will be 
in the direction x,, = const. Ihe incident ray is parallel to the x-axis. 
In the approximation of the lprinciple of the isolation of an element” 
the well-known law of the equality of the angles of incidence and re- 
flection must be maintained near the surface. l’herefore the reflected 
ray of the transverse wave will match the angle x12) = l/2 x0, i.e. the 
saddle-point x (2) determines the angle at which the transverse wave re- 
flects in the neighborhood of the cylindrical surface (Fig. 7). At com- 
plete internal reflection we obtain 

%(2) = X* = sin-’ 0 (3.2) 

We examine a particular case of an 
elastic medium. We set X = p (Poisson 
hypothesis), then 

sinx*=b/a= l/l/?& or x*z35o 

If it is assumed, moreover, that 
Fig. 8. 

b/a = l/2, then 9 = 30°, i . e. in both 
cases the head wave appears in the exposed part of the cylinder surface. 
However, for elastic media we always have a > b, hence the head wave 
cannot appear in the shadow region in the present formulation of the 
problem. * 

Let $2) = x’. Ih’ is means that at a certain instant of time the front 
of the reflected longitudinal wave begins to overtake the reflected 
transverse wave front, breaking away from the latter and producing an 

l For a = b (a fluid medium in which the head wave is absent in the 
given formulation of the problem) the angle x* = 90’. 
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additional excitation - the head wave. ‘Ihe position of these fronts is 
shown in Fig. 8. As a result of this kinematic analysis we see that the 

complete transverse wave field is com- 
posed of two parts 

Fig. 9. 

Ui* = Ui+ Ui* (i = 1, 2) 

Here ui is determined by Formula (2.71, 
and ui* is the integral over the cut I’,-, 
(Fig. 9). We turn now to its analysis. 

Because of the presence of the radical 
q(l-62 sin2 x) the integrand in (1.9) 
will be a double- valued function with a 
branch point p = sin-l 8 lying on the 
real axis. As a consequence of this, the 
investigation of the integral entering 
into (1.9) is most conveniently carried 
out on a two-sheeted Kemann surface 

[22 1. 

We introduce the final expressions 
for the displacements in the head wave 

u* (P) = ikz2 sinX,,U* (X, R), V*(P),_- iks2 cos x,,U* (x, R) (3.3) 

cos I/Z x0 exp [i (k2R - l/4 41 
U”(x, R) = -44h---- 

j&i VkzR 
‘r Cb (X) exp [-- ip cos (X - a)] dX 

CD (X) = q cos (x - 4) sinf;zT 42 x* (q=cosx7/ fl* - sin2 x) (3.4) 

We make the change of variables B = $ - x. Then, taking into account 
the smallness of @, (3.3) takes on the form 

x*- ic0 (3.5) 

U* (p, X)=5-16h cm (x*- l/2 x0) =p [i (M--l / 4 n)l dp 

1/n (i ‘anx*)s’~ v/kzR s 
e-iPf (P) i tan!! “’ 

( 1 2 2sin1/2 p 
0 

The integral that has been obtained, (3.5), can be expressed in terms 
of Weber functions. We use the Fok-Brekhovskikh equality [22 1 

x J2+P,--ioo 

1 

r(--n) s 
eilz(e’--n’)cos9--i$~rsi*B(i,,$)-n2sind~,te 

0 
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We transform this equality. It is well lmown [ 23 1 that the Weber 
equation is not changed if n, t, 7 in this equation are simultaneously 
replaced by -: (n + l), f it, f iq. Following this, (3.6) takes on the 
form 

x/2+P.--ioo 
1 

rtn +i) 
\ exp - [+ (E” - q2) cos p - iEq sin p] (i tpn iy+l 2 sity,, p 

0 

= D- w+~) (E + it) D- (Ir+~) k- ‘1+ id (3.7) 

Expression (3.5) may be transformed into (3.7) if we set 

E = l/G cos l/2 Xo2- x+ , rl = l/p sin ‘I2 xol ‘* 

‘Ihen we obtain 

u* (E, ‘1, R),_---8h co~~~~*~zX” exp Ii ($?& “’ n)l D-1, (E + iE) D__, (- q + iq) 

Since [ >> 1, we may use the asymptotic expansion of the Weber func- 
tion [ 23 1 

As a result we obtain 

D_+ (E + it) z exp (- 1/2 it”) exp (-“’ in) 6% ( jf T)% (3.8) 

Finally, the expressions for the displacements of the head wave take 
on the form 

u* (P) z sin xoU* (S, R), v* (4 z - cos xoU* (9, R) 

Here 
(1/1)80)%cos~ exp (ik2[R-22hcos1/2~o~o~~+~/~n]} U*(q, R)=- - 

25 Jf Rh L’/Z F (rl) 

F (q) = f/z exp T exp q D_,, (- q -I- id, L = 8 COS 1/2 x0 sin 9 (3*g) 

qJ = +xo-_x* 

lbe function F(q) can be expanded in an asymptotic series both for 
small and large q [ 22 1. 
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‘Ihe formulas that have been obtained describe the displacement field 
in the head wave for 42 > 2, where p = sin-’ 8. We remark that in 
the case of a fluid medium (0 = l), u* = ZJ* = 0, i.e. the head wave is 
absent. 

In conclusion, the author would like to thank N.V. Zvolinskii for 
valuable advice and comments offered during the preparation of this work. 
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